Curing disease correlates with insight, not blind effort. There is an eternal trade-off between insight and effort. If we think carefully, understand the problem, and plan, then effort is minimized. If (as too often happens) we think carelessly, misunderstand the problem, and rely on hope instead of planning, then effort is not only maximized, but […]
Curing Disease: More Insight Instead of Mere Effort
- Aging
- Alzheimer's
- beta amyloid
- biotech
- Curing Alzheimer's
- Dementia
- microglia
- tau protein
- Telomeres
- Vascular dementia
Curing disease correlates with insight, not blind effort.
There is an eternal trade-off between insight and effort. If we think carefully, understand the problem, and plan, then effort is minimized. If (as too often happens) we think carelessly, misunderstand the problem, and rely on hope instead of planning, then effort is not only maximized, but is usually a complete waste. Lacking insight, we foolishly flush both money and effort down the drain. In the case of clinical trials for Alzheimer’s disease – and in fact, all age-related diseases – this is precisely the case.
The major problem is a naïve complaisance that we already understand aging pathology.
If there was a single concept that is key to all of aging, it is the notion that everything in our organs, in our tissues, and in our cells is dynamically and actively in flux, rather than being a set of organs, tissues, cells, and molecules that statically and passively deteriorate. Aging isn’t just entropy; aging is entropy with insufficient biological response. Senescent cells no longer keep up with entropy, while young cells manage entropy quite handily. At the tissue level, the best example might be bone. We don’t form just bone and then leave it to the mercy of entropy, rather we continually recycle bony tissue throughout our lives – although more-and-more slowly as our osteocytes lose telomere length. This is equally true at the molecular level, for example the collagen and elastin molecules in our skin. We don’t finish forming collagen and elastin in our youth and then leave it to the vagaries of entropy, rather we continually recycle collagen and elastin molecules throughout our lives, although more-and-more slowly as our skin cells lose telomere length. Aging is not a process in which a fixed amount of bone, collagen, or elastin gradually erodes, denatures, or becomes damaged. Rather, aging is a process in which the rate of recycling of bone, collagen, or elastin gradually slows down as our shortening telomeres alter gene expression, slowing the rate of molecular turnover, and allowing damage to get ahead of the game. We don’t age because we are damaged, we age because cells with shortening telomeres no longer keep up with the damage.
The same is true not only of biological aging as a general process, but equally true of every age-related disease specifically. Vascular disease is not a disease in which our arteries are a static tissue that gradually gives way to an erosive entropy, but an active and dynamic set of cells that gradually slow their turnover of critical cellular components, culminating in the failure of endothelial cell function, the increasing pathology of the subendothelial layer, and the clinical outcomes of myocardial infarction, stroke, and a dozen other medical problems. Merely treating cholesterol, blood pressure, and hundreds of other specific pathological findings does nothing to reset the epigenetic changes that lie upstream and that cause those myriad changes. Small wonder that we fail to change the course of arterial disease if our only interventions are merely “stents and statins”.
Nor is Alzheimer’s a disease in which beta amyloid and tau proteins passively accumulate over time as they become denatured, resulting in neuronal death and cognitive failure. Alzheimer’s is a disease in which the turnover – the binding, the uptake, the degradation, and the replacement – of key molecules gradually slows down with telomere shortening, culminating in the failure of both glial cell and neuron function, the accumulation of plaques and tangles, and ending finally in a profound human tragedy. The cause is the change in gene expression, not the more obvious plaques and tangles.
Our lack of insight, even when we exert Herculean efforts – enormous clinical trials, immense amounts of funding, and years of work – is striking for a complete failure of every clinical trial aimed at Alzheimer’s disease. Naively, we target beta amyloid, tau proteins, phosphodiesterase, immune responses, and growth factors, without ever understanding the subtle upstream causes of these obvious downstream effects. Aging, aging diseases, and especially Alzheimer’s disease are not amenable to mere well-intended efforts. Without insight, our funding, our time, and our exertions are useless. Worse yet, that same funding time, and exertion could be used quite effectively, if used intelligently. If our target is to cure the diseases of aging, then we don’t need more effort, but more thought. However well intentioned, however much investment, however many grants, and however many clinical trials, all will be wasted unless we understand the aging process. Aging is not a passive accumulation of damage, but an active process in which damage accumulates because cells change their patterns of gene expression, patterns which can be reset.
Curing Alzheimer’s requires insight and intelligence, not naive hope and wasted effort.